Experimental Study on Specific Heat of Concrete at High Temperatures and Its Influence on Thermal Energy Storage

نویسندگان

  • Jianwen Pan
  • Renxin Zou
  • Feng Jin
  • Francesco Calise
چکیده

Using concrete as a thermal energy storage (TES) material is a promising option for large-scale solar-thermal resource development and utilization. Specific heat is one of the most important characteristics for TES performance. In this paper, the half-open dynamic method based on the mixing principle is proposed and applied to measure concrete-specific heat at temperatures up to 600 ◦C. Measurement of the specific heat of corundum ceramic (99% Al2O3) is first performed, and the test results illustrate the accuracy and efficiency of the proposed test method. Furthermore, concrete-specific heat tests are carried out at high temperatures. It found that the specific heat increases as the temperature rises, especially, linearly in the range of 300–600 ◦C, in which the concrete TES module is expected to be in operation. Finally, the effect of concrete-specific heat changes with temperature on its TES capacity is investigated, demonstrating that specific heat is of great significance for concrete TES design for concentrating solar power.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comprehensive Study on a Latent Heat Thermal Energy Storage System and its Feasible Applications in Greenhouses

Abstract Energy crisis is a major challenge in the current world. Latent heat thermal energy storage (LHTES) systems are known as equipment with promising performance by which thermal energy can be recovered. In the present study a comprehensive theoretical and experimental investigation is performed on a LHTES system containing PEG1000 as phase change material (PCM). Discussed topics can be ca...

متن کامل

Experimental and Numerical Investigations on Al2O3–Tricosane Based Heat Pipe Thermal Energy Storage

The enhancement of operating life cycle of electronic devices necessitates the development of efficient cooling techniques. Therefore, in the present work the effects of employment of Phase Change Material, in the adiabatic section of heat pipe for electronic cooling applications were experimentally and numerically investigated. Tricosane (100 ml) is chosen as PCM in this study, where Al2O3 nan...

متن کامل

An Experimental Study on Thermophysical Properties of Multiwalled Carbon Nanotubes (RESEARCH NOTE)

Nanofluids are the heat transfer fluids having remarkable thermal properties. The paper presents the experimental analysis of thermal conductivity, density, specific heat and viscosity of multiwalled carbon nanoparticles dispersed in water at various temperatures and particle concentrations. To examine the forced convection heat transfer of Multiwalled Carbon Nanotubes (MWCNT)-water nanofluid, ...

متن کامل

Ventilated hollow core slab as a thermal mass strategy and its effect on thermal comfort; (case study: lotion college, England)

Thermal mass is the material's ability to store heat and release it after an amount of time and concrete is considered one of the best thermal mass material. Since concrete has been used widely in many building constructions, by considering the capability of concrete in terms of thermal mass, it is worthwhile to use this ability of concrete in order to build buildings more healthy and comfortab...

متن کامل

Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

Concrete has the potential to become a solution for thermal energy storage (TES) integrated in concentrating solar power (CSP) systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20) is tested at high temperatures up to 600 ◦C. Specimens are thermally cycled at temperatures in the range of 400–300 ◦C, 500–300 ◦C, and 600–3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016